_
~
53
α
Ġ
-
z
6
c
z
7
-

	Formules chimiques	Masse volumique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S) (g/cm³) (L) (g/mL) (G) (g/L)	(°C)	(°C)	(J/g· ⁰ C)			
Acide acétique	HCH ₃ CO ₂		16,63	117,90		L	En solution aqueuse, il rougit le papier tournesol.	
Acier		Semblable au fer				S	Alliage de fer et de carbone (< 2,0%). L'alliage de fer peut contenir en faible quantité du nickel, du molybdène du chrome. Conducteur électrique et thermique.	
Air		1,29		-182	0,99	G	Mélange gazeux formé principalement d'azote (78%) et d'oxygène (21%). Contient différents gaz rares tel le néon, le krypton, l'hélium, le xénon ainsi que de la vapeur d'eau et du dioxyde de carbone. Incolore.	
Aluminium	Al	2,70	660,1	2450	0,9	S	Couleur argentée. Conducteur électrique et thermique.	
Alun	$Al_2(SO_4)_3$	2,71	770			S	Poudre blanche.	
Ammoniac	NH ₃	0,72	-77,75	-33,42		G	Incolore.	
Ammoniaque	NH ₄ OH		-77			L	Soluble dans l'eau.	
Argent	Ag	10,5	961,93	2212	0,23	S	Couleur argentée. Conducteur électrique et thermique.	
Argile	Al ₂ O ₃ -SiO ₂	3,247				S	Mélange de roche sédimentaire qui lorsque imbibé d'eau devient malléable. Formé en grande partie de Al ₂ O ₃ -SiO ₂ . On le retrouve dans le rouge et le brun.	
Argon	Ar	1,7824	! 189,38	! 185,87	0,512	G	Incolore.	
Baryum	Ba	3,51	725,1	1849,0		S	Couleur argentée .	
Béryllium	Be	1,85	1278	2970		S	Couleur gris métallique.	
Bicarbonate de soude	NaHCO ₃	2,16	270			S	Poudre blanche.	
Bois					1,8	S	Substance formée principalement de carbone.	
Bore	В	2,34	2300	2550		S	Solide dur et noirâtre.	

_
\sim
5
α
Ġ
<u>.</u>
z
6
c
Z
3
1

	Formules chimiques	Masse volumique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S) (g/cm ³)	_		_			
		(L) (g/mL) (G) (g/L)	(°C)	(°C)	(J/g.ºC)			
Bronze		$8,4 < \tilde{n} < 9,2$				S	Couleur brune. Alliage essentiellement composé de cuivre, d'étain et parfois de zinc.	
Calcium	Ca	1,54	839	1484	0,65	S	Couleur blanc argenté.	
Caoutchouc						S	Substance élastique, tenace. Résiste aux faibles variations de température et à la lumière. Isolant électrique.	
	C Diamant	3,51	> 3550	4827			Incolore. Très dur.	
Carbone	C graphite	2,25	Sublime à 3652 à 3697	4827		S	Noir.	
	C sans forme	$1,8 < \tilde{n} < 2,1$	Sublime à 3652 à 3697	4827			Noir.	
Carborundum	SiC	3,22	Sublime à 2700			S	Noir transparent. Très dur.	
Céramique						S	Terre cuite en grès ou en porcelaine.	
Chlorure d'hydrogène	HCl	1,00	-114,8	-84,9		G	Incolore.	
Chrome	Cr	7,20	1857	2672		S	Gris métallique.	
Cobalt	Co	8,9	1495	2870		S	Gris argenté. Ferromagnétique.	
Craie	CaCO ₃	2,71	1339			S	Blanc ou blanchâtre. Tendre et friable. Calcaire d'origine marine.	
Cuivre	Cu	8,92	1083,4	2567	0,39	S	Rougeâtre. Malléable et ductile. Conducteur électrique et thermique.	
Diamant	С	3,51	> 3550	4827		S	Incolore. Très dur.	
Diazote	N_2	1,25	-209,86	-195,8	1,04	G	Incolore.	

$ \overline{}$
2
а
ω
3
ω
\mathcal{C}
Z
z

	Formules chimiques	Masse volumique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S) (g/cm ³)						
		(L) (g/mL)	(⁰ C)	(°C)	$(J/g.^{0}C)$			
		(G) (g/L)						
Dichlore	Cl_2	3,21	-100,98	-34,6		G	Jaune vert, très toxique.	
Dihydrogène	H_2	0,0899	-259,14	-252,87	14,43	G	Incolore. Explose en présence d'une flamme.	
Diiode	I_2	4,93	113,5	184,35		S	Noir violacé.	
Dioxyde de carbone	CO_2	1,98	-56,6	-78,5		G	Incolore. Brouille l'eau de chaux.	
Dioxygène	O_2	1,43	-218,4	-182,962	0,92	G	Incolore. Ravive le tison.	
Eau	H_2O	1,00	0,00	100,00	4,19	L	Incolore.	
Essence	C_8H_{18}	0,69	-121,2	106,8		L	Liquide inflammable.	
	Sn gris	5,75	231,97	2270			Gris argenté.	
Étain	Sn blanc	7,28	231,88	2260	0,208	S	Blanc.	
	Sn fragile	6,52	231,89	2260			Blanc.	
Éthanol	C ₂ H ₅ OH	0,79	-114,1	78,5	2,55	L	Incolore . Famille des alcools.	
Fer	Fe	7,86	1535	2750	0,49	S	Gris métallique. Bon conducteur électrique et thermique. Ductile et malléable. Ferromagnétique.	
Fluor	F	1,69	-219,62	-188,14		G	Vert jaune. Très réactif.	
Fluorure d'hydrogène	HF		-83,1	19,54		G	En solution aqueuse, il rougit le papier tournesol.	
Germanium	Ge	5,35	937,4	2830		S	Gris blanc.	
Glycérine	C ₃ H ₈ O ₃	1,26	18	290	1,64	L	Incolore et inodore. Famille des alcools.	
Hélium	Не	0,76	-272,2	-268,9	5,167	G	Incolore et inodore.	
Hydroxyde de calcium	Ca(OH) ₂	2,24	580			S	Blanc. Soluble dans l'eau (eau de chaux).	

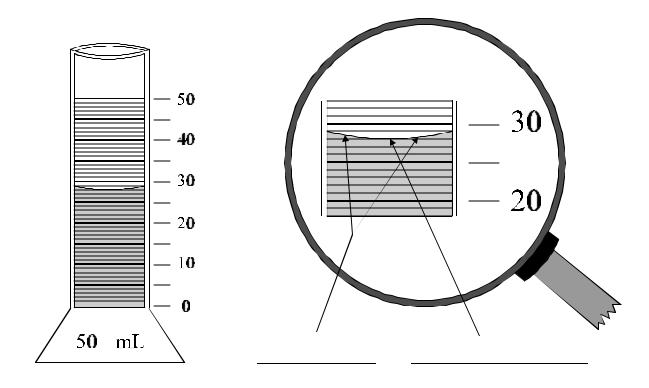
_
~
53
α
Ġ
-
z
6
c
z
7
-

	Formules chimiques		Masse umique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S)	(g/cm ³)						
		(L)	(g/mL)	(°C)	(°C)	$(J/g.^0C)$			
		(G)	(g/L)						
Hydroxyde de potassium	КОН		2,044	360,4	1320		S	Blanc.	
Hydroxyde de sodium	NaOH		2,130	318,4	1390		S	Blanc.	
Laiton							S	Alliage composé de cuivre et d'étain. Ductile et malléable. Conducteur électrique et thermique.	
Limonite	Fe ₂ O ₃ •H ₂ O						S	Magnétique.	
Lithium	Li		0,534	180,54	1347		S	Blanc argenté. Réagit avec l'eau.	
Magnésium	Mg		1,74	648,8	1090		S	Blanc argenté.	
Magnétite	Fe ₃ O ₄		5,18	1538			S	Noir métallique. Magnétique.	
Mercure	Hg		13,59	-38,87	356,58	0,14	L	Gris argenté. Conducteur électrique et thermique	
Méthane	CH_4			-182,5	-161,5		G		
Méthanol	CH ₃ OH		0,79	-97,8	64,7	2,54	L	Incolore et inodore. Famille des alcools.	
Molybdène	Mo		10,2	2617	4612		S	Blanc argenté.	
Naphte			0,70				L	Incolore. Odorant. Très volatile.	
Néon	Ne		0,90	-248,67	-246,05	1,029	G	Incolore.	
Nichrome							S	Alliage de nickel, de chrome et de fer. Inoxydable. Possède une grande résistance électrique.	
Nickel	Ni		8,90	1455	29,20	0,44	S	Gris métallique. Conducteur électrique et thermique. Ferromagnétique.	
Nitrate de sodium	NaNO ₃		2,27	306,28	380		S	Blanc semi-transparent.	

$ \overline{}$
2
а
ω
3
ω
\mathcal{C}
Z
z

	Formules chimiques		asse nique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S)	(g/cm ³)						
		(L)	(g/mL)	(⁰ C)	(⁰ C)	$(J/g.^0C)$			
		(G)	(g/L)						
Nitrate d'hydrogène	HNO ₃			-42	83		L	En solution aqueuse, il rougit le papier tournesol.	
Or	Au	1	7,0	1064,43	2807	0,13	S	Jaune. Conducteur électrique et thermique. Ductile et malléable.	
Oxyde de chrome	CrO						S	Poudre noire.	
Permalloy							S	Alliage composé de 78% de nickel et de 22% de fer. Ferromagnétique. Grande perméabilité magnétique.	
Peroxyde	H_2O_2	1	,44	-0,41	150,2		L	Incolore et inodore.	
	P ₄ rouge	2	2,34	590	200			Rouge.	
Phosphore	P ₄ violet	2	2,36	590			S	Violet.	
	P ₄ blanc	1	,82	44,1	280			Blanc. S'enflamme à 30 °C dans l'air.	
Platine	Pt	21	1,45	1772	3827		S	Argent métallique. Ductile et malléable. Conducteur électrique et thermique.	
Plomb	Pb	11	1,34	327,50	1753	0,12	S	Argent métallique. Ductile et malléable. Conducteur électrique et thermique.	
Potassium	K	0),86	63,65	774		S	Argent. Réagit vivement avec l'eau.	
Poudre à laver	Na ₂ CO ₃	2,	,523	851			S	Poudre blanche.	
Pyrrhotine							S	Magnétique.	
Radium	Ra		5	700	<1140		S	Blanc argenté. Radioactif.	
Rouille	Fe ₂ O ₃	5	5,24	1565			S	Rouge brun.	
Sel de lithium	LiCl	2,	,068	614	1345		S	Blanc. Dégage une lumière rouge dans la flamme.	
Sel de table	NaCl	2	2,16	801	1413		S	Blanc. Dégage une lumière jaune dans la flamme.	

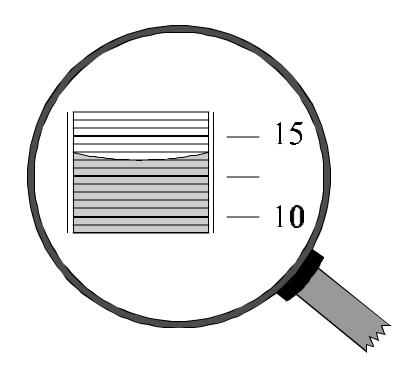
	Formules chimiques	Masse volumique (ñ)	Température de fusion (T)	Température d'ébullition (T)	Chaleur massique (c)	État à 20 °C	Autres propriétés	
Unités		(S) (g/cm ³)						
		(L) (g/mL)	(°C)	(°C)	$(J/g.^{0}C)$			
		(G) (g/L)						
Sel de calcium	CaCl ₂	2,15	772	>1600		S	Blanc.	
Sel de cuivre	CuCl ₂	3,39	620	993		S	Bleu vert.	
Silicium	Si	2,33	1415	2680		S	Gris métallique. Semiconducteur.	
Sodium	Na	0,97	97,81	882,9	1,23	S	Argent. Réagit vivement avec l'eau.	
Soufre	S_8	2,08	115,21	440,60		S	Jaune.	
Sucre	$C_{12}H_{22}O_{11}$	1,59	192			S	Blanc.	
Sulfate d'hydrogène	H_2SO_4		10,38	338		L	En solution aqueuse, il rougit le papier tournesol.	
Tungstène	W	19,35	3407	5663	0,132	S	Gris noir. Conducteur qui résiste à de très hautes température.	
Uranium	U	19,05	1130	3927		S	Blanc argenté. Radioactif.	
Vert de gris	CuCO ₃ - Cu(OH) ₂	4,0	200			S	Vert.	
Vinaigre						L	Solution aqueuse d'acide acétique. Rougit le papier tournesol.	
Xénon	Xe	5,887	-111,9	-107,1	0,158	G	Incolore.	
Zinc	Zn	7,14	419,58	907	0,38	S	Argent.	

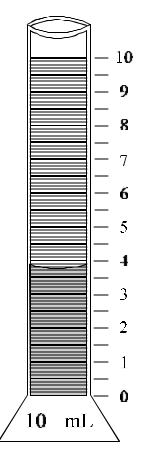

Le cylindre gradué

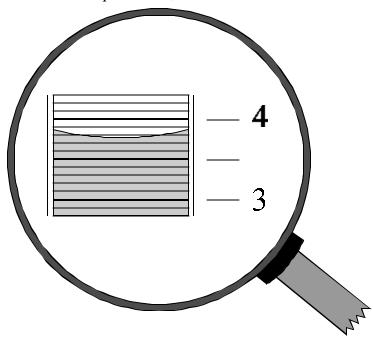
Introduction:

Un cylindre gradué est un instrument de mesure servant à mesurer le volume des liquides. Il existe différentes grandeurs de cylindre gradué pour mesurer différents volumes de liquide. Les cylindres gradués de 10 mL, 25 mL, 50 mL et 100 mL sont utilisés fréquemment dans tes expérimentations.

En dépit de sa facilité apparente d'utilisation, plusieurs erreurs expérimentales sont reliées à une mauvaise lecture de celui-ci. Il est donc important d'apprendre à l'utiliser correctement.


Détermination du volume:


Le point de lecture est l'endroit où la courbe du ménisque est à son plus bas. Le volume de ce liquide est 28 mL.


Le cylindre gradué (suite)

Il faut toujours porter une attention particulière à la graduation. Le volume de ce liquide est 13,5 mL.

Parfois, il faut se servir de son jugement. Le volume de ce liquide est 3,77 mL.

La balance

Introduction

La balance est un instrument de mesure servant à déterminer la masse d'une substance. Celle que tu vas utiliser lors de tes expérimentations est un appareil mécanique de grande précision qui doit être manipulé avec beaucoup de précautions.

(Plateau, crochets, curseurs, pointeur, support de plateau, vis de calibrage ou vis d'ajustement)

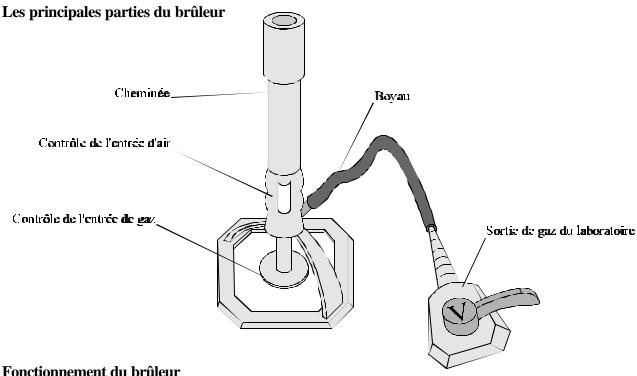
Le brûleur bunsen

Introduction

Le brûleur Bunsen est un brûleur à carburant gazeux servant à chauffer des substances. À partir de celui-ci, il est possible d'obtenir différents types de flamme:

C flamme éclairante : flamme orange de faible intensité obtenue lorsque l'admission d'air est

fermée. Cette flamme noircit les objets chauffés et ne produit pas


beaucoup de chaleur.

C flamme normale: flamme bleue obtenue lorsque l'admission d'air est ouverte. C'est la

flamme la plus couramment utilisée.

C flamme oxydante: flamme bleue de forte intensité et bruyante obtenue lorsque l'admission

d'air est très ouverte.

- icuomiement au bruieur
 - C S'assurer que les admissions de gaz et d'air sont fermées.
 - C Ouvrir la sortie de gaz en plaçant la valve parallèle à la sortie.
 - C Placer la flamme de l'allumette à l'ouverture de la cheminée tout en ouvrant lentement le contrôle de l'entrée de gaz jusqu'à l'obtention d'une flamme de 10 cm.
 - C Tourner la cheminée pour obtenir le type de flamme désirée et exécuter la manipulation.
 - C Pour éteindre le brûleur,
- 1. fermer la sortie de gaz du laboratoire,
- 2. fermer le contrôle d'entrée de gaz,
- 3. fermer le contrôle d'entrée d'air.

Annexe D Les isotopes naturels

Les isotopes naturels

Nom de l'élément	Nombre de masse	Masse atomique (u)	Abondance dans la nature (%)
Hydrogène	1	1,008	99,985
	2	2,014	0,015
Hélium	4	4,003	100,000
Lithium	6	6,015	7,420
	7	7,016	92,580
Béryllium	9	9,012	100,000
Bore	10	10,129	19,700
	11	11,009	80,300
Carbone	12	12,000	98,890
	13	13,003	1,110
Azote	14	14,003	99,635
	15	15,000	0,365
Oxygène	16	15,995	99,759
	17	16,999	0,037
	18	17,999	0,204
Fluor	19	18,998	100,000
Néon	20	19,992	90,920
	21	20,994	0,257
	22	21,991	8,820
Sodium	23	22,989	100,000
Magnésium	24	23,985	78,600
	25	24,986	10,110
	26	25,983	11,290
Aluminium	27	26,982	100,000
Silicium	28	27,977	92,180
	29	28,976	4,710
	30	29,974	3,120
Phosphore	31	30,974	100,000

Annexe D Les isotopes naturels

Nom de l'élément	Nombre de masse	Masse atomique (u)	Abondance dans la nature (%)
Soufre	32	31,972	95,000
	33	32,971	0,760
	34	33,968	4,220
	36	35,967	0,014
Chlore	35	34,969	75,530
	37	36,966	24,470
Argon	36	35,968	0,337
	38	37,963	0,063
	40	39,962	99,600
Potassium	39	38,964	93,100
	40	39,964	0,010
	41	40,962	6,890
Calcium	40	39,963	96,970
	42	41,959	0,640
	43	42,959	0,145
	44	43,955	2,060
	46	45,954	0,003
	48	47,953	0,185

ÉLECTRICITÉ

Retour sur les notions de base du cours: «initiation à la technologie»

Définition

- C L'électricité est une forme d'énergie qu'on ne peut voir mais dont on peut observer les effets quand elle est transformée en d'autres formes d'énergie (mécanique, thermique, lumineuse, sonore, etc.
- C L'**électricité statique** se définit comme une accumulation de charges électriques dans la matière.
- C L'**électricité dynamique** se définit comme un mouvement ordonné de charges électriques dans la matière.

La charge électrique

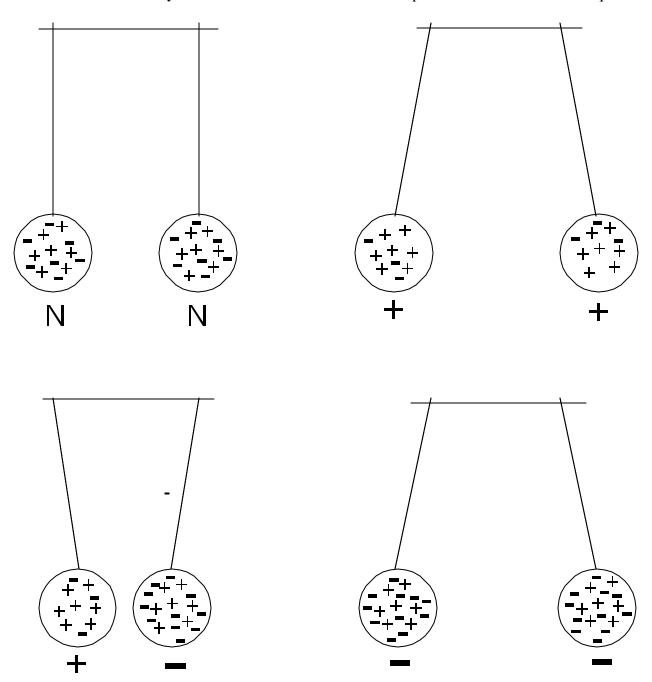
- C Le proton possède une charge électrique positive.
- C L'électron possède une charge électrique négative.

La charge électrique du proton est égale en grandeur à la charge électrique de l'électron et on l'appelle charge électrique élémentaire. (C'est la plus petite qui puisse exister)

La charge électrique élémentaire est tellement petite et si peu pratique qu'on a pris l'habitude d'utiliser une autre unité que l'on appelle coulomb (C). Un coulomb est en fait un gros paquet de charges élémentaires. (On compte les pommes à la douzaine et les charges électriques en coulomb)

1 douzaine = 12 unités

1 coulomb = 6 250 000 000 000 000 000 charges élémentaires


= 6,25 * 10¹⁸ charges élémentaires

EX.: Q = 4 C se lit: la charge électrique est égale à 4 coulombs.

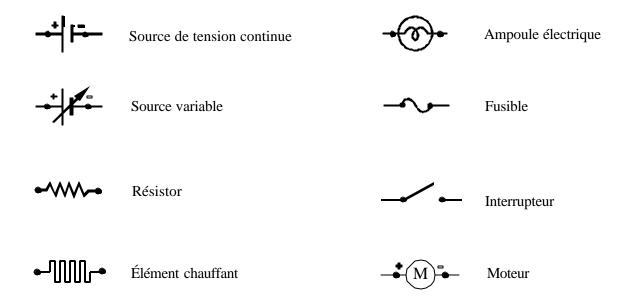
L'électricité statique

Par frottement, une matière peut arracher des électrons à une autre et causer un déséquilibre électrique dans lequel les charges électriques sont immobiles. Ce phénomène se nomme électricité statique.

On peut observer les effets des charges les unes sur les autres par des attractions ou des répulsions de celles-ci. Le système a tendance à retourner à son état plus stable de neutralité électrique.

L'électricité dynamique

Dans ce type d'électricité, il y a **mouvement des charges électriques** dans la matière. Dans la très grande majorité des cas on utilise des solides comme conducteurs électriques, ce qui nous amène à ne considérer que le mouvement des charges négatives, c'est-à-dire celui des électrons. En effet, les porteurs de charges positives sont les protons et ils sont prisonniers des noyaux qui ne peuvent se déplacer dans une matière à l'état solide.


Sens de circulation de l'électricité

L'électricité a longtemps été perçue comme un fluide s'écoulant dans la matière et selon une intuition de Benjamin Franklin (1752), on a convenu que l'électricité circulait de la borne positive de la source à la borne négative. On parle ici de **sens conventionnel** de circulation de l'électricité.

Une plus grande connaissance de la structure de la matière et la découverte des charges électriques des électrons sont venus contredire cette convention. Il est aujourd'hui reconnu que le déplacement des électrons s'effectue de la borne négative de la source vers la borne positive. On parle ici du **sens réel** de circulation de l'électricité (sens électronique).

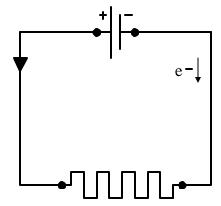
Malgré la contradiction évidente, les deux sens sont encore en utilisation de nos jours et peuvent très bien être employés sans difficulté en autant que l'on évite de passer de l'un à l'autre à l'intérieur d'un même problème.

Quelques symboles en électricité

Le circuit électrique simple

Trois composantes électriques sont essentielles.

C Source d'énergie électrique: elle fournit l'énergie nécessaire au déplacement des charges électriques.


Ex.: batterie

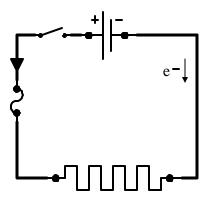
C Appareil de transformation: il utilise l'énergie de la source en la transformant.

Ex.: élément chauffant

Conducteurs: ils servent de chemin pour le passage des charges électriques.

Ex.: fils de cuivre

Trois composantes additionnelles sont très utiles.


Commande: elle permet de contrôler la mise en marche et le fonctionnement du circuit. Ex.: interrupteur

 ${\tt C}$ ${\bf Protection}$: Elle protège les composantes du circuit contre les surcharges.

Ex.: fusible

C **Isolants**: Ils assurent la circulation des charges aux endroits voulus.

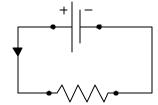
Ex.: isolants sur les fils de cuivre

Les grandeurs de l'électricité

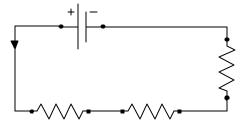
Le fonctionnement d'un circuit électrique peut être ramené à la simple circulation de charges électriques dans les diverses composantes du circuit.

La source: elle fournit l'énergie aux électrons et provoque le déplacement de ceux-ci dans le circuit.

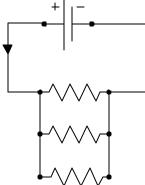
C cette énergie que possèdent les électrons s'appelle tension électrique (U) et se mesure en volt (V)

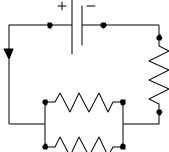

Ex.: U = 12 V La tension est égale à 12 volts.

C l'intensté (I) est le débit des charges dans le circuit et se mesure en coulomb (C) par secondes (s) et s'exprime en ampère (A)


Ex.: I = 3 C/s = 3 A L'intensité est égale à 3 coulombs par seconde ou 3 ampères.

Les types de circuits


Circuit simple: une source reliée à un appareil de transformation.


Circuit série: les composantes sont placées les unes à la suite des autres de sorte qu'il n'y a qu'un chemin possible pour la circulation des charges.

Circuit parallèle: les composantes sont placées en dérivation sur des branches indépendantes, chacune d'elles étant branchées directement à la source.

Circuit mixte: Certaines composantes sont branchées en série, d'autres en parallèles.

Jean et Johanne ont reçu le mandat de réaliser une expérience simple pour mesurer la masse volumique de 6 objets inconnus. Le professeur leur remet une boîte avec les six objets ainsi qu'un vade-mecum contenant une liste de différentes substances avec leurs masses volumiques.

De plus, il exige un rapport complet sur l'identification des substances à partir de leur masse volumique.

IA MASSE VOLUMIQUE

par:

Jean Mange

et

Johanne Nananne

Travail présenté à:

Yvon Morin Gérald Roy Claude Vallée

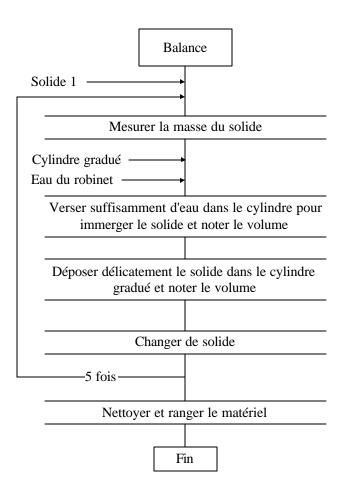
Sciences physiques 416-436 Groupe: xx

École secondaire Montcalm Le xx septembre 199x

But:

Identifier les 6 objets à partir de leur masse volumique.

Hypothèse:


Après l'observation de propriétés comme la couleur, la texture, la masse relative, etc., je suis en mesure de poser les hypothèses suivantes:

C Substance 1: plomb C Substance 4: fer C Substance 2: cuivre C Substance 5: paraffine C Substance 3: nickel C Substance 6: zinc

Matériel:

C Une balance C Ensemble de six objets

Protocole:

Tableau des données:

Objet	Masse (g)	Volume initial (mL)	Volume final (mL)
1	39,65	20	23,5
2	44,73	20	25,1
3	57,04	20	28,0
4	25,86	20	35,1
5	9,46	20	30,4
6	66,52	20	29,0

Tableau des résultats:

Objet	Volume du solide (cm³)	Masse volumique (g/cm³)	Identification	
1	3,5	11,33	Plomb	
2	5,1	8,77	Cuivre	
3	8,0	7,13	Zinc	
4	15,1	1,71	Magnésium	
5	10,4	0,91	Paraffine	
6	9,0	7,39	Fer	

Exemple de calcul:

Voici un exemple de la méthode de calcul utilisée pour déterminer la masse volumique de chaque échantillon.

Masse volumique en g/cm³ =
$$\rho = \frac{m}{V}$$

Échantillon #1

Volume =
$$V_{final}$$
 ! $V_{initial}$ = 23,5 mL ! 20 mL = 3,5 mL = 3,5 cm³

$$\rho = \frac{m}{V} = \frac{39,65 \text{ g}}{3.5 \text{ cm}^3} = 11,33 \frac{\text{g}}{\text{cm}^3}$$

Les mêmes équations sont utilisées pour chaque échantillon.

Conclusion:

Nous avons atteint l'objectif de ce laboratoire qui était d'identifier les six substances à partir de leur masse volumique. À l'aide du vade-mecum et des masses volumiques calculées, nous pouvons déterminer que les substances inconnues sont:

Objet	Identification	Masse volumique (g/cm³)	Hypothèse
1	Plomb	11,33	Plomb
2	Cuivre	8,77	Cuivre
3	Zinc	7,13	Nickel
4	Magnésium	1,71	Fer
5	Paraffine	0,91	Paraffine
6	Fer	7,39	Zinc

De plus, nos hypothèses sur l'identification des substances se sont avérées partiellement exactes. En effet, d'après les comparaisons précédentes, on remarque que les hypothèses d'identification du zinc, du magnésium et du fer sont inexactes, tandis que les hypothèses d'identification du plomb, du cuivre et de la paraffine sont exactes. Voici donc une preuve que de simples observations de propriétés ne suffisent pas à identifier avec certitude une substance.